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The Bray-Humayun model for phase-ordering dynamics is solved numerically in one and two space
dimensions with conserved and nonconserved order parameter. The scaling properties are analyzed
in detail, and we find the crossover from multiscaling to standard scaling in the conserved case. Both
in the nonconserved case, and in the conserved case when standard scaling holds an exponential tail

in the scaling function is found.
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I. INTRODUCTION

In this paper we are concerned with scaling behav-
ior in the phase-ordering dynamics of a system quenched
below the critical point [1]. Specifically, we consider a
system with an N-component order parameter $(§:‘) =
(¢1(Z),...,¢n(Z)) quenched from high temperature to
zero temperature whose dynamics are described by the
zero noise Langevin equation

9(Z 1) avn ez V()
ot - (ZV) \% ¢ 3(; ) (1)
where p = 0 for a nonconserved order parameter

(NCOP), p = 2 for a conserved order parameter (COP),

iy

and V(¢) = %52 + %(&2)2 is the local potential with
(r < 0,9 > 0). One of the reasons for the continuing in-
terest in this type of problem is that a theoretical deriva-
tion of scaling on a first-principles basis is still lacking
except for a few exactly soluble models [2,3].

Let us first give a qualitative description of what goes
on during the phase-ordering process. Initially the sys-
tem is prepared in a high-temperature state where the
order parameter is spatially uncorrelated,

(¢(2,0) - $(z’,0)) = Adag(z — 2'), (2)
with a,3 = 1,..., N and A is a constant. The local order
parameter probability distribution has a peak of width
A centered about $ = 0. As the quench develops there
is first a fast process (early stage) where this probabil-
ity distribution, after a short time %o, relaxes to equi-
librium in the local potential, depleting the origin and
developing a peak structure all around the bottom of
the potential. In this span of time the local variance
(#%(Z,t0)) = S(to) loses memory of the initial condi-
tion A reaching a value very close to the final satura-
tion value Seq = —7/g. At this point the system is al-
most at equilibrium, namely ordered, on a short length
scale. The subsequent time evolution amounts to coars-

ening of the ordered regions in order to reduce the excess

interfacial free energy. During this process (late stage)
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the only important time dependence is in the linear size
of the ordered regions, which typically grows according
to a power law L(t) ~ t'/* with z = 2 for NCOP and
z = 3 or z = 4 for COP, respectively, with N = 1
or N > 1. When L(t) is large enough to dominate all
other lengths the quantities of interest exhibit scaling.
The main observables are the equal time order parame-
ter correlation function G(7,t) = (5(5, t)-$(&+7,t)) and
the structure factor C’(E,t) obtained by Fourier trans-
forming G(7,t) with respect to space. The local variance
of the order parameter is related to these quantities by
S(t) = G(7 = 0,t) = [ E5C(k,t). Actually, we will be
interested in the quantity

R(t) =7+ gS(t) = g[S(t) — Seqls (3)

which monitors how the saturation value of S(t) is
reached.

According to the scaling hypothesis, all time depen-
dence can be expressed through L(t). The dominant be-
haviors for large L(t) are given by

R(t) = b (4)
oLey
with @ = 2 for systems with vector order parameter [4]
and

C(k,t) = Seaf (L(t), kL(t)), (5)

where the function f(L, kL) must go over to (k) in the
limit L — oo in order to reproduce the Bragg peak cor-
responding to the final ordered state. In other words,
f(L,kL) is a smoothed out é function on the scale L(t)
with the normalization property
dk
[ oyt (L0, kL) = 1. (6)

Experiments, numerical simulations, and soluble models,
with the exception of the exact solution of the large-N
model with COP [3], yield the following form of scaling:

f(L,kL) = LF(KL), (7)
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which we refer to as standard scaling. By contrast, when
the model with N = oo and COP is solved one finds
that this pattern of scaling is not obeyed. In that case
the system behaves differently since next to L(t) there
is another divergent length k() ~ L/(In L)Y/%, where
km(t) is the peak wave vector of the structure factor.
Consequently, there appears a logarithmic correction in

(4),

R(t) = ——2

D, (®)

and in place of (7) one has the qualitatively different form
F(L K /km) ~ (L2k5 4P/ k), (9)

with ¥(z) = 1 — (22 — 1)2. This pattern of scaling is
referred to as multiscaling.

It should be stressed that the above solution of the
N = oo model is the only available analytical solution
of a system with COP. Hence, due to the difficulty of
discriminating between multiscaling and standard scaling
on the basis of the usual data collapse analysis, one may
reasonably ask the question whether multiscaling might
in fact be a generic feature of all systems with COP. In
other words, setting * = kL and neglecting logarithmic
differences between L and k!, i.e., letting L = u/k,,
with u constant, one can postulate the general scaling
form

f(L,z) = [L(#)]*® F(), (10)

which contains (7) and (9) as particular cases, respec-
tively, with ¢(z) = d and p(z) = dy(z/u). It is then
a matter of computation or experiment to extract the
spectrum of exponents ¢(z) and to check whether it is
flat as in standard scaling or it is genuinely dependent,
implying multiscaling.

This kind of analysis has been carried out on the data
for the structure factor obtained from the simulation [5-
7] of systems with COP and with N ranging from 1 to
4 in two and three dimensions. In all of these cases the
observed behavior of (z) is consistent with the flat spec-
trum characteristic of standard scaling. Furthermore, an-
alytical work of Bray and Humayun [8] (BH) on a model
with N large but finite and d > 1 suggests that standard
scaling holds for any finite N, while multiscaling is only a
feature of the special case N = co. Actually, the picture
that BH put forward is that there exists a crossover time
t* which depends on N and the initial condition A and
such that multiscaling holds for ¢ < t* while for t > t*
standard scaling sets in. Therefore, different asymptotic
behaviors are obtained according to the order of the lim-
its t = oo and N — oo, as it was conjectured very early
on by Oono [9]. If the limit ¢ — oo is taken first, standard
scaling is observed asymptotically for any value of IV, as
long as N < co. Conversely, if the limit N — oo is taken
first, then the crossover time ¢t* diverges and the asymp-
totic behavior exhibits multiscaling since the regime of
standard scaling can never be reached.

What is at stake in this question of standard scaling
vs multiscaling is the nature of the symmetry underly-
ing scaling behavior [5]. The results of the simulations

could be regarded as nonconclusive, since one could well
imagine a spectrum ¢(z) which is dependent on N and
which interpolates between the N = oo behavior and the
standard scaling behavior as IV gets smaller and smaller.
Then, for values of N of order unity, such as in the simu-
lations, it might be difficult to decide whether a ¢(z) with
a weak dependence on z is evidence for standard scaling
or for multiscaling. Instead, the result of BH is clear cut
and states that the symmetry underlying asymptotic dy-
namics leads to standard scaling for any finite N. This
result is quite important from the point of view of theory
since theoretical progress in this field so far has heavily
relied on the use of very clever but uncontrolled approx-
imations [10]. This is due to the difficulty of developing
systematic and controlled approximation schemes. An
exception is the 1/N expansion for systems with NCOP
[11]. The result of BH eliminates the possibility of ex-
tending the 1/N expansion as a systematic expansion
scheme to the conserved case.

For the relevance of this issue, in this paper we have
made a detailed study of the crossover from multiscaling
to standard scaling through a comparative analysis of the
numerical solution of the BH model with NCOP and with
COP. Our aim is to proceed to an unbiased analysis of
the scaling properties in order to have a check on the BH
picture without any a priori assumption on the type of
scaling, and to analyze in detail the difference between
the conserved and nonconserved cases. In this respect
our work is quite different from that of Rojas and Bray
[12]. These authors do perfom a numerical solution of
the BH model after the standard scaling ansatz has been
made, while we first solve for the structure factor and
then we proceed to the scaling analysis on the basis of
the uncommitted general form (10).

The paper is organized as follows: in Sec. II we present
the model and we elaborate on the difference between
standard scaling and multiscaling, introducing the ob-
servables best suited to distinguish one from the other.
In Sec. III we illustrate the method of solution with a
test of its validity made by comparing numerical data
with the analytical solution in the NV = oo case. In Sec.
IV we present the results for finite N in one and two
dimensions and in Sec. V we make some concluding re-
marks.

II. BH MODEL, STANDARD SCALING,
AND MULTISCALING

By using the Gaussian auxiliary field method of
Mazenko [13], BH have derived [8] from (1) a closed equa-
tion of motion for the equal time correlation function
within the framework of the 1/N expansion. Retaining
nonlinear terms up to first order in 1/N one has
9G(7,1) S\p [S2 1.

——= =2(V)? |V G — R(t —G 11

o) = 269y | ®(e+xc)],
where R(t) is a function of time which must be deter-
mined by the equilibrium requirement

lim G(7 = 0,t) = Seq = —7/g. (12)

t—oo
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The corresponding equation of motion for the structure
factor is obtained after Fourier transforming with respect
to space variables

C(k,t) . iz " kP -
5 = 2k [k* + R(t)] C(k,t) -2 R()D(k, 1),

(13)

where D(k, t) is the Fourier transform of G3(7,t). Notice
that in the limit N — oo (13) reduces to the equation
which has been studied in [3],

aC(k,t)
o

In this latter case R(t) is defined self-consistently by (3).
We shall retain this definition of R(t) also in the finite
N case since from (13) follows that in order to reach
equilibrium R(t) must vanish and with the definition (3)
the condition lim; ,, R(t) = 0 is an implementation of
the requirement (12).

Although (11) or (13) have been derived by a trun-
cation procedure based on the 1/N expansion, the solu-
tion of the equation is not of first order in 1/N since it
contains all orders in 1/N. Actually, it is not possible
to assess precisely what is the relationship of this solu-
tion with the systematic 1/N expansion performed on
the basic equation of motion (1). Presumably, it is some
kind of infinite partial resummation intertwined with the
uncontrolled approximation inherent in the use of the
Gaussian auxiliary field method of Mazenko [10,13].
Hence, (11) or (13) should be regarded as the definition
of a model, the BH model, for phase-ordering dynamics
with an /N-component vectorial order parameter which
in the N — oo limit reproduces the usual large-N limit
of (1) for the dynamics of the structure factor.

In order to make the scaling analysis of the BH model,
let us integrate formally (13) from some instant of time
to onward,

—2kP [k% + R(t)] C(k,1). (14)

C(k,t) = C(F, to)e2[F""" (t=to)+h7{Q(1)-Q(to)}]
t
Ll / dt’' R(t')e 2K P (=t R {Q(0)-Q(t))]
N Jy,
XD(E,t'), (15)
where Q(t) = fot dt'R(t'). Choosing tp in the scaling

region, according to the standard scaling hypothesis we
have the asymptotic behaviors

C(E»t) = SeqLd(t)F(w)’ (16)

R(t) = —bL™%(t), (17)
—2b1n[L(t)/Lo] for NCOP

Q(t) — Q(to) = (18)

—2b[L%(t) — L2] for COP,

with = kL(t), L(t) = t'/(3+P) Ly = L(to), and b is a
positive constant to be determined.

Let us first consider the case of NCOP. Performing the
above ansatz on (15) we find
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F(z) = F(z0)(z/20) % de~2(="~20)

#5557 [ S eyt p@),
(19)
where ©o = kLg and
(@)= [ o ara (1 E =)
xF(| & — &2 |)F(z2).
The condition (12) requires

iﬂF(w) =1,

(2m)? (20)

which gives an equation for b. Letting zo — 0 and re-
quiring (20) to be satisfied, in the N = oo case we obtain
4b—d =0 and

F(z) = F(0)e~ 2"

while for finite N we find 4b — d < 0.
Let us now go to the COP case. Making the scaling
ansatz into (15) with p = 2 we find

(21)

F(z)= F(a:o)(xg/a:)de_z[(zq'“’3)—26(”2_23)]

8bS52 ® 4_ 14 2__r2
+ eq dzlxld+le—2[(z —z'*)-2b(z* —= )]D((L")
Nzd /m

o

(22)

Now, if we let again zo — 0, in the N = oo case F(z) van-
ishes identically and it is not possible anymore to satisfy
(20). This is the breakdown of standard scaling in the
large-V limit which leads to multiscaling [3]. Conversely,
if N is kept finite, (22) yields

gbsz z 1 ’
Flo) = gt [ detanetet e )

(23)

This is the equation that BH have solved, finding a non-
trivial solution and reaching the conclusion that for any
finite N standard scaling holds also for systems with
COP.

According to the above discussion the first term in
the right-hand side of (15), the one which survives after
N — o0, is responsible for multiscaling behavior while
the second one is responsible for standard scaling. The
competition of these two terms is expected to generate a
crossover time t* such that multiscaling behavior of the
type found with N = oo holds for ¢t < t* while standard
scaling eventually sets in for ¢t > ¢*.

In the following we will make a numerical study of the
scaling properties of the structure factor in the BH model
on the basis of the general scaling form (10). The pri-
mary interest is in the discrimination between standard
scaling and multiscaling and in the study of the crossover.
The analysis will be carried out through the behavior of
the spectrum of exponents ¢(z) as described in the In-
troduction and through the behavior of the quantity
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Y(t) = —R(@)L*(1), (24)

which discriminates between standard scaling and multi-
scaling on the basis of the asymptotic behaviors

Y1) {: b(N) for standard scaling

~ (Int)}/? for multiscaling.

(25)

III. METHOD OF SOLUTION
AND NUMERICAL RESULTS
FOR N = c©

In order to investigate the scaling properties of the BH
model the discretized version of (11) is integrated nu-
merically via a simple finite difference first-order Euler
scheme. The initial condition is given by G(7,0) = A
for ¥ = 0 and G(7,0) = 0 elsewhere. The boundary con-
ditions are chosen to be periodic, but open conditions

NCOP d=1
N = oo
-1.3851 |
—— 4=001
-1. .
3853 A=01
See-A=1
-1.3855 | ——-a=10
= -1.3857 |
z
€
-1.3859 |
-1.3861 |
-1.3863
In(1/4) = -1.386294
-1.3865 : : . :
160 170 180 180 200 210 220 230 240
In{In(t)]
NCOP d=2
N=o
-0.650 | —— A=001
-0.660 |
S 0670
£
-0.680 |
-0.690 |
In(1/2) = -0.693147
-0.700 : L :
0.0 05 1.0 15 20
Infin(t)]
FIG. 1. InY(t) for NCOP with N = oo and different val-

ues of A displaying the approach to In(1/4) = —1.386 29 for
d =1 and to In(1/2) = —0.693 14 for d = 2 as predicted by
(25).

have been tested and found not to make a difference on
the final results. From the values of G(7,t) the struc-
ture factor is then obtained via a fast Fourier transform
and from these two functions all quantities of interest are
computed.

Two opposite requirements enter in the choice of the
parameters of the numerical solution, and in particular
of the linear dimension L of the system. A large number
of lattice sites is desirable to avoid that discretization
of space may hide the subtle difference between stan-
dard scaling and multiscaling. On the other hand, fewer
sites speed up the computation and investigation of later
times is feasible. Resorting to parallel computing, we
have managed to perform the numerical integration on
large systems and for sufficiently long times. In princi-
ple, one can solve (13) to obtain directly the structure
factor, but the presence in (13) of a double convolution
integral, which cannot be parallelized efficiently, makes
this alternative computational scheme much slower.

=1
N=oo
15 .
—— d=1 A=0.01
d=1 A=041 ’l |
--d=1 A=1 / |
——-d=1 A=10 /’/ 1
--— y=1In[(1/2) In(t)] B ;
1.0 b 4‘
— |
s I |
€
05 | 7_””/7”””_”/_/“ - |
0.0 | ‘
0.0 1.0 - ;
nfin(t))
= oo
1.4 -
—— d=2 A=0.01 |
d=2 A=0.1 ) |
N aT2 i 4
— — y=1In[(1/2) In(t)] )
1.0 - E |
_

v Pi‘/// . J‘
go08+ | = |
= : - ‘
£ ; - |

0.6 - - o ﬁ;

04 - /~/4///// l‘
| 1

02 ; |
|

| |

0.0 ! . | ‘
) ) =0 3.0
Infin(t)}
FIG. 2. InY(t) for COP with N = co and different values
of A.
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For all runs the value of the mesh size has been taken
as Az = 1, while the time step At has been changed
depending on the values of NV and d in order to prevent
numerical instabilities. In particular, for NCOP, At =
0.01 for all values of d and N except when N = 10. In
this latter case, we have taken At = 0.005. For COP,
At = 0.05 for d = 1 and At = 0.01 for d = 2. For
the parameters of the potential V(¢) we have chosen the
values r = —10 and g = 1.

After computing the structure factor C(k, t) for several
different times, the spectrum of scaling exponents ¢(z)

can be obtained by using the general scaling form (10),
which can be rewritten as

InC(k,t) = o(z)In L(t) + In F(z), (26)

where L(t) = tsr and = = kL(t). Hence, plotting
InC(xz/L(t),t) vs InL(t) at fixed z one can measure
¢(z) from the slope and F(z) from the intercept with

COP d=1

N=e A=0.01
15 .

@(x)

— ()

e 5 <t <10
----100<t<220

——- 5000 <t < 12000
—-— 200000 < t < 500000

0.5 1.0

— (¥

e 5 <t <10
----100<t<220

—— - 5000 <t < 12000

— - — 200000 < t < 500000

-1.0
0.0

0.5

FIG. 3.

o(x)
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the vertical axis. However, from the numerical point

of view it is more convenient to use a slightly differ-
ent procedure, because z/L(t) could turn out to be too
small or too big with respect to the available values
of k. For the NCOP case, C(E, t) is computed not as
C(z/L(t),t) but as C(zkz(t),t), where ky(t) is defined
by C(kz(t),t) = C(0,t)/2. This introduces in Eq. (26)
an additional constant term given by the logarithm of
the proportionality factor between L(t) and ko(t). Fur-
thermore, the error in the determination of k(t) and
C(xzk2(t),t) is greatly reduced by the use of linear inter-
polation between the discrete values of k. In the COP
case C(k,t) is computed as C(zkm(t),t) where k,,(t) is
the peak wave vector of the structure factor. The loga-
rithm of C(zkn(t),t) is plotted versus In[L2(¢)k24(¢)].
With this choice, for N = oo, the slope ¢(z) is given by
dy(x) rather than by diy(z/«). This makes the compar-
ison between numerical and analytical results easier also
for N < co. Again the quality of the fit is enhanced by
determining the peak wave vector and C(zkn,(t),t) via

COP d=1
N=c A=0.1

o(x)

— y(x)

e 5<t< 10

---- 100 <t<220

— —- 5000 <t < 12000
—-— 200000 < t < 500000

0.5

1.5

— (¥
- 5<t<10 1)
----100<t<220 2
— —- 5000 <t < 12000 ;
0.5 - —-— 200000 < t < 500000 :‘-.‘\
v.\
-1.0 .
0.0 0.5

1.0 15

Time evolution of ¢(z) for COP with N = oo, d = 1, and different values of A.



53 MULTISCALING TO STANDARD-SCALING CROSSOVERIN ...

cubic and linear interpolation, respectively.

In order to check the quality of the numerical method,
let us consider the N = oo case where exact analyt-
ical results are available. We solve for C(k,t) in one
and two space dimensions with A ranging in the inter-
val (0.01,10). We discuss first the case of NCOP and
then the case with COP. The motivation for doing this
computation is also to establish clearly the behavior of
observables according to standard scaling (NCOP) and
to multiscaling (COP).

A. NCOP

In order to analyze the behavior of Y (¢) in Fig. 1
In[Y (¢)] has been plotted versus In(Int) for d = 1 and
d = 2. In both cases In[Y (¢)] displays the approach to
the asymptotic constant value In(d/4) of standard scal-

COP d=1
N = 200000 <t < 500000

15 |

¥
%20 05 1.0 1.5
X
COP d=2
= 3000 <t< 10000
25 .
e
S
1.5 : -
0.0 05 1.0 15
X
FIG. 4. Late stage (200000 < ¢t < 500 000) multiscaling

behavior of ¢(z) for COP with N = oo, revealing indepen-
dence from the initial condition.
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ing predicted by (25) through a transient dependent on
the initial condition A. No detectable dependence on
the initial condition is found in the behavior of ¢(z)
which in agreement with (16) follows the constant be-
havior ¢(z) = d. Similarly, the numerical results for the
scaling function reproduce accurately the Gaussian be-
havior (21).

B. COP

With COP the behavior of In[Y (t)] is qualitatively dif-
ferent from what we had above with NCOP. In place of
the relaxation to a constant value now (Fig. 2) there
is an upward increasing trend revealing multiscaling. In
the time of the computation there is still a dependence
on the initial condition A, with a faster convergence to
the asymptotic behavior ~ In[1/21n(¢)] given by (25) for

NCOP d=1

20 - —— N=10° A=0.01,0.1,1,10
: ---- N=10" A=001,01,1,10
——-N=10 A=001.0.1,1,10

s 25-
<
1
i
3.0 F
%. _________________________
-3.5 -
i
40 | . . .
160 170 180 190 200 210 220 230
In[in(t)]
NCOP d=2
0.5
1.0 ¢ —— N=10° A=0.01,0.1,1,10 ]
---- N=10" A=0.01,0.1,1,10
= ——-N=10 A=001,01,1,10
=
€
15 b 1
2.0 . TETmmeee To——m———
0.0 0.5 1.0 1.5 2.0
InfIn(t)]
FIG. 5. InY(t) for NCOP with N = 10,10%,10%. The

A-dependent transient preceding the asymptotic behavior is
negligible in this scale for d = 1.
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higher values of A. The asymptotic behavior has not
been reached in the time of the computation due to the
much slower dynamics of COP.

Multiscaling is most clearly illustrated by the behavior
of ¢(z). It is interesting to see how the spectrum of
exponents depends on the time interval of observation. In
Fig. 3 the evolution of ¢(z) in subsequent time intervals
has been plotted for different values of A and for d = 1.
Results for d = 2 are similar. Figure 3 demonstrates
the relaxation of p(z) to the asymptotic behavior given
by ¢(z) = dy(z). As remarked above the relaxation is
faster for higher values of A. The late stage results are
displayed in Fig. 4 both for d = 1 and d = 2, showing
the independence from A of the computed @(x). This

NCOP d=1

A=0.01,0.1,1,10
A=0.01,01,1,10
A=0.01,01,1,10
A=0.01,01,1,10
A=0.01,01,1,10

In[F(x)]
®
=3

Pid .

e

s
7y

’

0.0 2.0 2.0 6.0 8.0

NCOP d=2

—— N=e A=0.01,0.1,1,10

N=10° A=0.01,0.1,1,10 !
--- N=10° A=001,0.1,1,10 4
——- N=10° A=0.01,0.1,1,10
—-— N=10 A=0.01,0.1,1,10

= <
iy ~.
c ~ ~
£ | N -
5.0 F S RN 4
‘ N <
| N <
H ~ ~
| N RS
N -
| \\\ N
[ N i
| AN |
1 ~ !
‘»
-15.0 ‘ " Mo J
0.0 2.0 4.0 6.0 8.0
X
FIG. 6. Plot of the scaling function for NCOP demon-

strating exponential decay in the tails.
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suggests that, at least in the range of z considered, ¢(z)
reaches the asymptotic regime faster than Y ().

IV. RESULTS FOR FINITE N

In this section we illustrate the solution of the BH
equation with finite IV obtained by the numerical method
described in the preceding section.

A. NCOP

The standard scaling behavior of systems with NCOP
is manifested (Fig. 5) first of all in the behavior of Y (),

COP d=1
N =300
1
"} i
050 |-
0.40 -
0.30 |
£ o20F TS T -2
5 -
ot0 b IS
- — A=10°
0.00 | - e =107 ;
- - A=t |
- ——-A=5 1
-0.10 | —— A=10 i
-0.20 |
0.0 1.0 20 3.0
In{In(t)]
COP d=2
N =300
I
| |
0.40 ]
s
£
0.30 | ]
0.20 - . . . .
0.0 05 1.0 15 20 25 3.0
Infin)]
FIG. 7. InY(t) for COP with N = 300 displaying, in the

preasymptotic regime, the switch from standard scaling to
multiscaling with increasing A.
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which according to (25) goes to a constant asymptotic
value b(NN) smaller than d/4 and decreasing monotoni-
cally with N. The transient preceding the asymptotic
behavior now depends both on A and N. Asymptotic be-
havior independent of A and N instead is manifested by
o(x) which displays with great accuracy the flat behavior
@(x) = d. A significant N dependence shows up (Fig. 6),
however, in the scaling function F(z). According to the
analysis of Sec. II, a deviation from Gaussian behavior
is expected for finite IV in the tail of F(z) due to the sec-
ond term in the right hand side of (19) and this deviation
clearly should be more important for small values of V.
The plot of In F'(z) vs x reveals the interesting feature
that the tail decays exponentially rather than following
the generalized Porod law ~ z~(4+N) [14]. Simulations

COP d=1
4=0.01
1.0
08 - _‘ﬁ;;f"’gvﬂ_’/ e
§ 0.6
£
—— N=300
N=10°
04t TN
\ —-— N=10°
0.2 . -
0.0 1.0 2.0 3.0
Infin(t)]
COP d=2
A=0.01
1.1 .
0.9 t
Sort ]
£ . —— N =300
..... N=10°
---- N=10'
——-N=10°
05 | —-— N=10" |
\._‘ N=10
0.3 : : : - -
0.0 0.5 1.0 15 2.0 25 3.0
Infin(t)]
FIG. 8. InY (t) for COP with A = 0.01 displaying, in the

preasymptotic regime, the switch from standard scaling to
multiscaling with increasing N.
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of a system with NCOP and N > d have been performed
by Toyoki [15], finding a tail which decays with a power
much higher than that of the generalized Porod law. Our
result suggests that an exponential fit might be appro-
priate also in this case.

B. COP

The picture is more complex and interesting with COP.
Figures 7 and 8 display, respectively, the behavior of
In[Y'(¢)] for a fixed value of N with varying A and vice
versa for a fixed value of A with varying N. What
emerges from a comparison with the analogous data for
N = o is that for fixed N (here N = 300) the behavior
is of the standard scaling type for A sufficiently small
(e.g., A = 1075) while it is of the multiscaling type for
A large (A = 10), with an interpolating behavior for in-
termediate values of A. Similarly, for A fixed (A = 0.01)
the behavior goes from standard scaling for N = 300 to-
ward multiscaling as N grows very large. This pattern
fits with the crossover picture illustrated in the Introduc-
tion, allowing for a crossover time t* which grows both
with V and with A. Standard scaling then applies when
the values of N and A are such that t* is very short.
For higher values of N and A, instead, t* can be made
large enough for the system to develop multiscaling be-
havior before the asymptotic standard scaling behavior
is reached. If only multiscaling behavior is observed, as,
for instance, for N = 300 and A = 10 or for N = 10°
and A = 0.01, it means that for those values of N and A
the crossover time t* is larger than the maximum time
reached in the numerical computation. From these data
it is very difficult, though, to infer the quantitative de-
pendence of t* on N and A. BH have proposed [8] the
analytical form t* ~ (AN)*4(In N)3, which holds for
d > 1. However, the predictions from this formula seem
to be quite off from what we observe. For instance, for
N = 300, A = 1, and d = 2 the above formula gives
t* ~ 107, which is large enough to expect an observable
crossover, while for these values of the parameters we find
only standard scaling behavior (Figs. 7 and 9).

As we have seen with N = oo the distinction between
standard scaling and multiscaling is most effectively man-
ifested through ¢(z). Thus, according to the crossover
picture obtained from Y (¢), it should be possible to pro-
duce standard scaling or multiscaling in ¢(z) by properly
choosing the values of N and A. In Fig. 9 we have an-
alyzed the evolution of ¢(x) in time for A = 0.01 and
different values of N for d = 2 (similar results are ob-
tained for d = 1). For N ranging from 102 to 10%, (z)
displays standard scaling over all time intervals, implying
that t* is of order 1. For larger values N = 10%,10° one
can definitely recognize a multiscaling type of behavior
over the initial time intervals, evolving toward standard
scaling in the later time intervals. Here it is difficult to
assess the value of t*, but it must be of the order of mag-
nitude of the time of observation. Finally, for N = 107
the behavior of ¢(x) is of the multiscaling type over all
time intervals, implying that t* exceeds the maximum
time reached in the numerical computation.
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In order to complete the analysis in Fig. 10 we have
plotted the logarithm of the scaling function F(z) vs z
for different values of NV, finding again an exponential
tail as in the NCOP case. In this case there are small
secondary peaks superimposed on the tail which scale like
L(t) and which become more pronounced as N grows.
Exponential tails have been observed previously in the
simulation of systems with COP and without topological
defects [7]. Finally, in agreement with Rojas and Bray
[12], we find that the peak of F(z) is well fitted by the
quartic exponential form appearing in the BH analytical
solution.

V. CONCLUSIONS

The main motivation for this paper was to investigate
in detail the onset of standard scaling in the BH model
for phase-ordering kinetics with COP and finite N. We
have done this by a comparative study of the numerical
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~ —- 3000 < t < 10000
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0.0 05 1.0 15
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solution of the model with NCOP and with COP. In both
cases eventually there is standard scaling, but the differ-
ence is much more profound than just the value of the
growth exponent (z = 2 for NCOP and z = 4 for COP)
when the whole development of the dynamics is taken
into account. As probes for scaling we have used Y (¢)
and ¢(z). Parameters of the quench are the initial con-
dition A and the number of components N of the order
parameter.

The picture for NCOP is the following. Starting from
a uniform initial condition C (1;, t =0) = A, after a short
transient of duration ¢to during which information on the
initial condition is lost, the dynamics of standard scaling
sets in, with ordered regions growing like L(t) ~ t/2
¢(z) = d, and the scaling form (16) obeyed. The only
place where there remains a detectable transient depen-
dence on the initial condition A for longer times than t,
is in the behavior of Y'(¢), which displays a very slow ap-
proach to the constant asymptotic behavior. This means
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@(x)

COP d=2
N=10" A=0.01
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-~ 30<t<100
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Time evolution of ¢(z) for COP with A = 0.01, d = 2, and different values of V.
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COP d=1

5.0

£
E
-15.0 :
0.0 5.0 10.0
X
COP d=2
=
"_—
=
-15.0 : :
0.0 2.0 4.0 6.0
X
FIG. 10. Plot of the scaling function for COP demonstrat-

ing exponential decay in the tails. Computations have been
carried out with A = 0.01.

that in the scaling ansatz for R(t) there is a slow correc-
tion with a small amplitude. This pattern of behavior for
NCOP is the same for any value of N, including N = oo.

By contrast, with COP the way the system eventu-
ally reaches standard scaling is more complicated and
depends on N due to the existence of the two character-
istic times tg and t*. Only if t* ~ t¢ is there no observable
difference between COP and NCOP. Instead, if t* is suf-
ficiently larger than to the system displays multiscaling
in between to and t*, before the standard scaling regime
is reached. In this sense multiscaling is not only a fea-
ture of the special case N = oo, but is relevant also for
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systems with finite N. The existence of a connection be-
tween multiscaling and standard scaling is expected after
recognizing that these are the two asymptotic features of
a crossover process. More specifically, let us consider a
general scaling form containing both regimes

C(k,t,N) = L¥®F (:c 2—\2) ,

(27)
with £ = k/k.,, a an index to be determined, and F a
function with the limiting behaviors

F Ny _ 1 if N/L* > 1

D Te ) TlAE)® if N/Le < 1,

where A and a(x) also must be determined. The above
form clearly yields multiscaling if the limit N — oo is

taken. If instead IV is kept finite and L(t) becomes large
one has

C(k,t,N) = AL @) ~ea(=) yalz)

(28)

(29)

and imposing di(z) — aa(x) = d one finds standard scal-
ing,

C(E,t, N) - ALde—g[l—'z/J(z)] InN _ 14'Lde—{f(a:2—1)2 lnN’
(30)

exactly with the BH scaling function, revealing the deep
connection between multiscaling and standard scaling as
the multiscaling spectrum (z) dictates the form of the
scaling function in the standard-scaling regime. This
multiscaling to standard-scaling crossover in principle
could be observed also in systems with realistic values
of N by making t* large enough exploiting the depen-
dence of t* on A. In this respect it might be interesting
to check this hypothesis on the simulations of Refs. [5-7]
performed with values of A making ¢t* sufficiently large.
Finally, the finding of exponential tails in the scaling
functions is quite interesting and simulations on cell dy-
namical systems are under way in order to check on the
existence of these tails in systems with N > d + 1.
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